0040-4039(95)02296-1

An Asymmetric Synthesis of (+)-Apogossypol Hexamethyl Ether

A. I. Meyers and Jeffrey J. Willemsen

Department of Chemistry, Colorado State University, Fort Collins, CO 80523 U.S.A.

Summary: The first asymmetric synthesis of the gossypol backbone via a stereocontrolled oxazoline mediated 2,2' Ullmann coupling has been achieved.

Gossypol (1), a polyphenolic binaphthyl isolated from cotton seed, has recently attracted considerable attention.¹ Pharmacologically this compound is known to be an oral antifertility agent in men and male animals, and shows activity for the potential treatment against HIV infections, diabetic complications, and cancer.²

Gossypol is a chiral molecule due to rotational restriction about the internaphthyl 2,2' bond. Both atropisomers have been isolated from natural sources or resolved³ but only the (-)-isomer exhibits oral antispermatogenic activity. Herein, we describe an efficient asymmetric synthesis of the gossypol backbone via a 2,2'-oxazoline mediated asymmetric Ullmann coupling, and the first asymmetric synthesis of apogossypol hexamethyl ether (12), a degradation derivative of 1.4

Reaction of o-(methoxy)aryl oxazolines with alkyl lithiums or Grignard reagents to give the corresponding o-(alkyl)aryl oxazolines has been demonstrated previously in our laboratory.⁵ This methodology was applied to the synthesis of the requisite pentasubstituted naphthyl oxazoline (5). Thus, treatment of the achiral oxazoline (3) with isopropylmagnesium chloride in THF⁶, and subsequent hydrolysis of the oxazoline moiety gave the aldehyde (5).⁷ The fully substituted naphthyl nucleus required for the Ullmann coupling was obtained using the Stobbe condensation⁸ and simple methyl ester saponification led to the naphthoic acid (6). Chiral oxazoline (7) was prepared in a simple process from 6 and tert-leucinol.⁹ o-Lithiation of 7 followed by reaction with tetrafluorodibromoethane gave the bromo oxazoline (9) in 71% yield.¹⁰ Asymmetric Ullmann coupling¹¹ of the bromo oxazoline afforded an 81% yield of a 11:1 mixture of diastereoisomers (10) which could be separated by column chromatography (SiO₂, 8:1 Hex:EtOAc). The pure bis-naphthyloxazoline (10) was transformed in a three step process¹² to the chiral dicarbinol (11), $[\alpha]_D = 157.5$ (CH₂Cl₂), which was enantiomerically pure by chiral HPLC assay.¹³ Reduction of the chiral diol to apogossypol hexamethyl ether (12), m.p. 274-275°C (lit.⁴

273-274°C), $[\alpha]_D$ = 123.3 (CH₂Cl₂), occurred in 96% yield upon treatment of 11 with 10% Pd/C, a trace of HCl in ethanol, and H₂ at atmospheric pressure.^{14,15} Based on previous asymmetric biaryl couplings from this group,¹⁶ the S-absolute stereochemistry has been tentatively assigned to compounds 10-12.

a) (COCI) $_2$; 2-Amino-2-methyl-1propanol; SOCI $_2$ b) /-PrMgCl c) Methyl triflate d) NaBH $_4$ e) Oxalic acid/ $_1$ O $_2$ 0 Dimethyl succinate, /-BuOKg) AcOH,Ac $_2$ O, AcONa; h) NaOH,MeOHi) ($_2$ CO $_3$, (CH $_3$ O) $_2$ SO $_2$ 0) NaOH, MeOH k) (COCI) $_2$; terr-Leucinol; SOCI $_2$ 1) $_2$ MeDil -78°-45° C m) C $_2$ F4Br $_2$ n) Cu°/ pyridine, reflux o) TFA, Na $_2$ SO $_4$ p) Pyridine, Ac $_2$ O q) LiAlH $_4$ r) 10% Pd/C, H $_2$, HCl, EtOH.

Acknowledgment. The authors are grateful to the Department of Education and the National Institutes of Health for financial support.

References and Notes

- 1. Jaroszewski, J. W.; Strom-Hansen, T.; Hansen, L. L. Chirality 1992, 4, 216.
- Fish, R. G.; Groundwater, P. W.; Morgan, G. J. J Tetrahedron: Asymmetry 1995, 6, 873, and references cited therein.
- Matlin, S. A.; Belenguer, A.; Tyson, R. G.; Brookes, R. G. J. High Res. Chrom. 1987, 10, 86, and references cited therein.
- 4. Meltzer, P. C.; Bickford, P. H.; Lambert, G. H. J. Org. Chem. 1985, 50, 3121, and earlier synthetic approaches cited.
- 5. Meyers, A.I.; Gabel, R.; Mihelich, E.D. J. Org. Chem. 1978, 43, 1372.
- 6. Meyers, A.I.; Mihelich, E.D. J. Am. Chem. Soc. 1975, 97, 7383.
- 7. Barner, B. A.; Meyers, A.I. J. Am. Chem. Soc. 1984, 106, 1865.
- 8. Johnson, W. S.; Daub, G. H. Organic Reactions, 1951, 1.
- For a typical carboxylic acid to oxazoline conversion see: Gant, T. G.; Meyers A. I. J. Am. Chem. Soc. 1992, 114, 1010.
- 10. Meyers, A.I.; Mihelich, E.D. J. Org. Chem. 1975, 40, 3158.
- 11. Nelson, T. D.; Meyers, A.I. J. Org. Chem. 1994, 59, 2655.
- 12. Nelson, T. D.; Meyers, A.I. Tetrahedron Lett. 1993, 34, 3061.
- 13. Chiralcel OD column, hexane,2-propanol (60:40), 1.0 mL/min.
- 14. It is noteworthy that enantiomerically pure apogossypol hexamethyl ether has not, to date, been described.
- 15. Moorlag, H; Meyers, A. I. Tetrahedron Lett. 1993, 34, 6993.
- 16. Nelson, T. D.; Meyers, A.I. J. Org. Chem. 1994, 59, 2655.